A Novel Function for SMN, the Spinal Muscular Atrophy Disease Gene Product, in Pre-mRNA Splicing

نویسندگان

  • Livio Pellizzoni
  • Naoyuki Kataoka
  • Bernard Charroux
  • Gideon Dreyfuss
چکیده

Spinal muscular atrophy (SMA) is a common motor neuron degenerative disease that results from reduced levels of, or mutations in, the Survival of Motor Neurons (SMN) protein. SMN is found in the cytoplasm and the nucleus where it is concentrated in gems. SMN interacts with spliceosomal snRNP proteins and is critical for snRNP assembly in the cytoplasm. We show that a dominant-negative mutant SMN (SMNdeltaN27) causes a dramatic reorganization of snRNPs in the nucleus. Furthermore, SMNdeltaN27 inhibits pre-mRNA splicing in vitro, while wild-type SMN stimulates splicing. SMN mutants found in SMA patients cannot stimulate splicing. These findings demonstrate that SMN plays a crucial role in the generation of the pre-mRNA splicing machinery and thus in mRNA biogenesis, and they link the function of SMN in this pathway to SMA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMN interacts with a novel family of hnRNP and spliceosomal proteins.

Spinal muscular atrophy (SMA) is a common neurodegenerative disease caused by deletion or loss-of-function mutations of the survival of motor neurons (SMN) protein. SMN is in a complex with several proteins, including Gemin2, Gemin3 and Gemin4, and it plays important roles in small nuclear ribonucleoprotein (snRNP) biogenesis and in pre-mRNA splicing. Here, we characterize three new hnRNP prote...

متن کامل

Gemin3: A Novel DEAD Box Protein that Interacts with SMN, the Spinal Muscular Atrophy Gene Product, and Is a Component of Gems

The survival of motor neurons ( SMN ) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called ge...

متن کامل

RNA splicing: More clues from spinal muscular atrophy

Spinal muscular atrophy is caused by mutations in the SMN1 gene, the product of which is part of a multi-component complex involved in the assembly of small nuclear ribonucleoproteins. A recent study indicates that SMN may also play a role in pre-mRNA splicing.

متن کامل

Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN).

The spinal muscular atrophy disease gene product (SMN) is crucial for small nuclear ribonuclear protein (snRNP) biogenesis in the cytoplasm and plays a role in pre-mRNA splicing in the nucleus. SMN oligomers interact avidly with the snRNP core proteins SmB, -D1, and -D3. We have delineated the specific sequences in the Sm proteins that mediate their interaction with SMN. We show that unique car...

متن کامل

SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy.

Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease affecting lower motor neurons. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene, which result in reduced levels of functional SMN protein. Biochemical studies have linked the ubiquitously expressed SMN protein to the assembly of pre-mRNA processing U snRNPs, raising the possibility that aberrant splici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 95  شماره 

صفحات  -

تاریخ انتشار 1998